
Die Kläranlage Aachen-Soers des Wasserverbandes Eifel-Rur (WVER) verfügt über eine großtechnische Ozonungsanlage. Der WVER ist einer der Partner, mit denen das Fraunhofer ILT die neue Abwasser-Monitoring-Technologie entwickelt. Das Inline-Messverfahren soll stichprobenartige manuelle Probenahmen wie hier in der Kläranlage Aachen Soers des Wasserverbandes Eifel-Rur ergänzen und in vielen Fällen ersetzen.
Um Wasseraufbereitungsprozesse in Kläranlagen zu überwachen, setzen deren Betreiber bisher auf 24-Stunden-Mischproben. Diese werden über den Tagesverlauf kontinuierlich gesammelt und anschließend im Labor auf Summenparameter hin analysiert; so etwa die Gesamtmenge enthaltener organischer Kohlenstoffe (Total Organic Carbon; TOC), gelöste organische Kohlenstoffe (Dissolved Organic Carbon; DOC) oder die Menge an Sauerstoff, die der vollständige aerobe Abbau biologischer Inhaltsstoffe (Biological Oxygen Demand; BOD) verbraucht. Angesichts der steigenden Bevölkerungsdichte in urbanen Räumen und variierender Abwasserzusammensetzungen stößt dieses 24-Stundenraster jedoch an Grenzen. Eine engmaschigere Kontrolle wäre nicht nur mit Blick auf die Qualität aufbereiteter Abwässer wünschenswert. Auch der Bedarf an Energie und teuren, in der Herstellung oft umweltbelastenden Betriebsstoffen ließe sich erheblich reduzieren, wenn die Betreiber im laufenden Aufbereitungsprozess nachvollziehen könnten, wie sich die Messwerte der Summenparameter verändern, um ihre Anlagen auf dieser Echtzeitdatenbasis steuern zu können.
Tauchsonde detektiert Emissionen
Ein Forschungsteam des Fraunhofer ILT legt aktuell das technologische Fundament, um eine solche datenbasierte Wasseraufbereitung real werden zu lassen. Das Herzstück hierfür ist eine neuartige laserbasierte Tauchsonde, welche die Wasseranalytik aus dem Labor direkt in die Klärbecken verlegt. »Wir nutzen das Phänomen, dass für die Wasserqualität relevante Inhaltsstoffe bei der Anregung mit spezifischen Lichtwellenlängen fluoreszieren. Unsere Tauchsonde regt diese Fluorophore mit verschiedenen Wellenlängen zwischen dem UV- und dem sichtbaren Spektralbereich an und detektiert jeweils die emittierten Fluoreszenzsignale«, erklärt Dr. Christoph Janzen, Spezialist für Bioanalytik, der am Fraunhofer ILT für die Entwicklung der 2D-Fluoreszenzsonde verantwortlich ist. Targets der Inline-2D-Fluoreszenzanalytik sind beispielsweise die Aminosäuren Tryptophan (TRP), Tyrosin (TYR), Phenylalanin (PHE) und die Gruppe der Huminsäuren (HS). Da die Wellenlängen für ihre Anregung von 260 Nanometern für PHE bis 350 Nanometern für HS reichen, koppelt das Team die Sonde mit einer durchstimmbaren Lichtquelle. »Diese kann alle Zielstoffe mit ihren spezifischen Wellenlängen anregen. Sofern sie im Abwasser vorhanden sind, emittieren sie ihr charakteristisches längerwelliges Fluoreszenzsignal«, sagt er. Mithilfe eines empfindlichen Spektrometers lässt sich für jede Anregungswellenlänge ein Fluoreszenzspektrum aufnehmen.
So entstehen 2D-Karten, welche die Anregungswellenlängen samt korrespondierender Lichtemission festhalten. Diese Anregungs-Emissions-Matrizen (Excitation Emission Matrices; EEM) visualisieren die detektierten Fluoreszenzsignale und informieren die Betreiber in jedem Stadium des Aufbereitungsprozesses präzise über die organische Schmutzfracht im Abwasser. »Diese 2D-Fluoreszenzmessung ermöglicht es, inline die charakteristischen Summenparameter des Abwassers direkt im Aufbereitungsprozess zu erfassen. Bisherige Verfahren können das nur offline im Labor. Kommerziell verfügbare Inline-Sonden für die Summenparameterbestimmung sind oft nur in einem begrenzten Parameterbereich zuverlässig und liefern falsche Messdaten, wenn die Abwasserzusammensetzung stark variiert«, erklärt Janzen. Um die Messungen abzusichern, sei es möglich, mit der Tauchsonde ergänzend zu den Fluoreszenzdaten auch Transmissionsspektren aufzunehmen.
